About me

  I’m Li Shengzhou. Nowadays, I am a PhD student of Computer Science in University of Tsukuba. My research topic is “Data-Driven and Machine Learning Based Material Science Research” under the supervision of Pro. Nakata Ayako from NIMS and Pro. Sakurai Tetsuya from University of Tsukuba.

Interests

KVM Docker PHP Python Nodejs Linux R Mysql Photoshop

Educations

  • Shanghai University (China), School of Computer Engineering and Science, Bachelor degree. (2012/09~2016/06)
  • Shanghai University (China), School of Computer Engineering and Science, Master degree. (2016/09~2019/04)
  • Northeast Normal University (China), Learning Japanese. (2019/10~2020/08)
  • University of Tsukuba (Japan), Graduate School of Science and Technology, Degree Programs in Systems and Information Engineering, Doctoral Program in Computer Science. (2020/10~Now) (MEXT Scholarship)

Publications

  1. S Li, H Zhang, D Dai, G Ding, X Wei, Y Guo. Study on the factors affecting solid solubility in binary alloys: An exploration by Machine Learning[J]. Journal of Alloys and Compounds, 2019, 782: 110-118.[DOI]
  2. W Zheng , H Zhang, H Hu, Y Liu, S Li, G Ding, J Zhang. Performance prediction of perovskite materials based on different machine learning algorithms[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(04): 803-809.[DOI](Chinese)
  3. Y Liu, H Zhang, Y Xu, S Li, D Dai, C Li, G Ding, W Shen, Q Qian. Prediction of Superconducting Transition Temperature Using A Machine-Learning Method[J]. Materiali in tehnologije, 2018, 52(5): 639-643.[DOI]
  4. H Zhang, G Zhou, S Li, X Fan, Z Guo, T Xu, Y Xu, X Chen, D Dai, Q Qian. Application of fuzzy learning in the research of binary alloys: Revisit and validation[J]. Computational Materials Science, 2020, 172: 109350.[DOI]
  5. D Dai, T Xu, H Hu, Z Guo, Q Liu, S Li, Q Qian, Y Xu, H Zhang. A New Method to Characterize Limited Material Datasets of High-Entropy Alloys Based on the Feature Engineering and Machine Learning[J]. Available at SSRN 3442010.[DOI]

Contact

Email: zhonger[at]live.cn (Please replace [at] with @.)

关于我

  我是李盛洲,目前我正在筑波大学攻读计算机博士学位。我的导师是NIMS的中田彩子研究员和筑波大学的樱井铁也教授,我的主要研究方向是《基于数据驱动和机器学习的材料科学研究》。

研究兴趣

KVM Docker PHP Python Nodejs Linux R Mysql Photoshop

教育经历

  • 上海大学(中国),计算机工程与科学学院,工学学士(2012年9月~2016年6月)
  • 上海大学(中国),计算机工程与科学学院,工学硕士(2016年9月~2019年4月)
  • 东北师范大学(中国),留日预备学校,日语学习(2019年10月~2020年8月)
  • 筑波大学(日本),情报工学部(计算机科学),博士在读(2020年10月~至今)(文部科学省奖学金)

论文发表

  1. S Li, H Zhang, D Dai, G Ding, X Wei, Y Guo. Study on the factors affecting solid solubility in binary alloys: An exploration by Machine Learning[J]. Journal of Alloys and Compounds, 2019, 782: 110-118.[DOI]
  2. W Zheng , H Zhang, H Hu, Y Liu, S Li, G Ding, J Zhang. Performance prediction of perovskite materials based on different machine learning algorithms[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(04): 803-809.[DOI](中文)
  3. Y Liu, H Zhang, Y Xu, S Li, D Dai, C Li, G Ding, W Shen, Q Qian. Prediction of Superconducting Transition Temperature Using A Machine-Learning Method[J]. Materiali in tehnologije, 2018, 52(5): 639-643.[DOI]
  4. H Zhang, G Zhou, S Li, X Fan, Z Guo, T Xu, Y Xu, X Chen, D Dai, Q Qian. Application of fuzzy learning in the research of binary alloys: Revisit and validation[J]. Computational Materials Science, 2020, 172: 109350.[DOI]
  5. D Dai, T Xu, H Hu, Z Guo, Q Liu, S Li, Q Qian, Y Xu, H Zhang. A New Method to Characterize Limited Material Datasets of High-Entropy Alloys Based on the Feature Engineering and Machine Learning[J]. Available at SSRN 3442010.[DOI]

联系我

邮箱:zhonger[at]live.cn (请使用@替换[at])